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~ Abstract — In sub-mm and THz monolithic cir-

cuits, transitions between layered ridged dielectric
waveguides and power sources may include short
lengths of conductor. An integral equation-mode
matching technique is expanded so.that such a tran-
sition may be analyzed, and results for one-port dis-
continuities in microstrip on a dielectric ridge and
preliminary characterization of an actual transition
are presented.

I. INTRODUCTION

The excessive ohmic losses of microstrip in the sub-mm
and THz frequency ranges force the monolithic circuit de-
signer to seck out new means for power propagation. One
promising candidate for such a transmission line is layered
ridged dielectric waveguide [1]. This type of waveguide
consists of a dielectric ridge on a substrate, and the ridge
consists of two or more layers. Proper choice of dielectric
constant in each layer enables the power to be confined in
a single, low-loss layer. These waveguides are constructed
from dielectric materials and structures which are available
in monolithic technology so that the use of the waveguides
in integrated circuits is possible.

When these waveguides are integrated with sources of
power (such as active devices), or when these waveguides
are used to form passive circuit components (such as a
power combiner), short lengths of conductor may be used
to minimize radiation. For example, a transition between
a power source and a dielectric waveguide would have the
configuration displayed in Figure 1. The ridge is shown
with two layers, and the conductor on the top of the ridge is
tapered to minimize unwanted reflections. Due to the high
operating frequencies of these structures, accurate charac-
terization can only be accomplished with full-wave analysis
techniques.

The presence of the ridge in Figure 1 suggests that the
transition be modeled by means of a hybrid method which
combines well-known integral equation and mode match-
ing techniques. In its initial presentation in 1991 (2], the
integral equation-mode matching (IEMM) technique was
applied to the relatively simple two-dimensional configu-
ration *of coupled microstrip on dielectric ridges with no
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Figure 1: Example of a transition to a ridged dielectric waveguide.

substrate. The IEMM technique is sufficiently versatile so
that it may be extended in a straightforward manner to
three-dimensional structures such as a transition.

In this paper, the three-dimensional IEMM technique is
presented, with emphasis on the extensions of the technique
from 2D to 3D problems and from simple microstrip on
ridges to more complicated multi-layered structures. The
analysis of some simple geometries is presented as evidence
of the utility of the numerical technique. Finally, prelimi-
nary results and future considerations which are necessary
for the full characterization of a transition are discussed.

II. THEORY

The structure which is to be analyzed is shown in Fig-
ure 2. The outer walls are perfect electric conductors.
Along the y-axis, the structure is divided into four sections
at y = by, be, b3. Sections A and D consist of one layer each,
and sections B and C are divided into three layers along the
z-axis at * = a1, az. A conducting strip is located parallel
to the z-axis at y = b;. The y-dimension of the strip is
assumed to be negligible. The cavity extends from z = 0
to z = ¢ and, except for the conducting strip, the cavity
is uniform in the z-direction. The integral equation-mode
matching technique may be used to evaluate a structure
which has an arbitrary number of conductors parallel to
the z-axis and an arbitrary number of sections with each
section having an arbitrary number of layers, but, for sim-
plicity and brevity, only the theory for the specific structure
of interest is considered here.

The discontinuity is characterized from the currents on
the conducting strip, which are determined by solving Pock-
lington’s integral equation in the spatial domain. The
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Figure 2: Cross-section of the structure to be analyzed; the con-
ducting strip has been replaced by point source at (2’,%/, z’).

integral equation may be written as

B = /S,_GEJdS' (1)
where Gg is the dyadic electric field Green’s function as-
sociated with the structure, J is the surface current on
the conducting strip, and S’ represents the surface of the
conducting strip. The Green’s function is the electric field
when the conducting strip is replaced with a current source
at (2, 7).

The Green’s function is derived by considering each sec-
tion of the structure as a section of inhomogeneous parallel
plate waveguide. In each section, the fields consist of infi-
nite sums of TE, and TM, modes. Away from the source,
the fields satisfy the homogeneous wave equation, and may
be determined using vector potentials A = a,(z,y, 2)% and
F = f.(z,y,2)% via
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The z-, y- and z-dependencies of a, and f, are separable.
From the uniformity of the cavity in the z-direction and
the boundary conditions at # = 0, ¢, the z-dependence in
all sections is deduced to be cos k,(z —c) for the TE, modes
and sin k,(2 — ¢) for the TM, modes, where k, = nx/c.

The boundary conditions at each layer interface and
at the upper and lower conducting walls determine the z-
dependence of the fields in each layer in a given section [3].
Specifically, these boundary conditions are used to generate
transcendental equations for the z-directed wavenumbers
and expressions for the unknown constants associated with
the z-dependence.

The y-dependence Y of the fields consists of infinite
sums of plane waves. In sections A, B, and C, the y-
dependencies are of the form

v4 o E (A?;Le_jkylni‘! + Al_nejk”'"y) (4
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where A}, and Aj, are the mode amplitudes for the (I, n)t
mode in section A and ky, are the y-directed wavenumbers.
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For convenience in the application of the boundary condi-
tions, the fields in section D are separated into two parts,
which are designated the primary and secondary fields. The
y-dependencies Y}P of the primary flelds consist of plane
waves leaving the source in the %y-direction, i.e.,
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The boundary conditions at the source (y = y’) are sat-
isfled by the primary fields, and the primary field mode
amplitudes D%, are thereby explicitly determined. The
y-dependencies Y of the secondary fields satisfy the ho-
mogeneous wave equation in all regions and consist of plane
waves traveling in both directions, i.e., equation 4 with
mode amplitudes D}, and Dg,,. The boundary conditions
at y = 0, by, by, b3, b are used to generate two equations from
which D%, and D, are determined.

Mode-matching allows the boundary conditions at the
section interfaces to be satisfied. The fields at y = b3 are re-
lated to the fields at y = 0 by means of scattering matrices
(which are numerically stable, unlike transmission matri-
ces). The scattering matrix S© for the interface at y = b3
is defined by

- ]

where C~, C*, Dp, Dﬁ, Dy, and Dg are all column vec-
tors of the form €~ = [C Cx ... Cf, ... ]%. Similar
equations exist which define the scattering matrices at the
interfaces y = b;,b;. Reflection coefficient matrices T(W,

I'® and I'® are defined by

C+]
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B* = [rW]pB- (1)
ct = [t®]c- (8)
p§ = [r®](Dp+D5) (9)

Application of the boundary conditions at y = 0 and ma-
nipulation of the scattering matrix equations allow A*  B*
and C* to be eliminated; hence the reflection coefficient
matrices are

7@
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where 7 = 1,2,3; L) = diag{e=kun(b5=bi-1)Y, TO) = _T.
and [ is the identity matrix. ‘

The boundary conditions at the conducting wall y = &
and manipulation of the matrix equations give an expres-
sion for the section D secondary field mode amplitudes Dg
in terms of DE. D? is then determined from equations 9-
10.

Given the z-, y- and z-dependencies of the fields gen-
erated by a point source, the components of the Green’s
function are known and the integral equation is solved with



the method of moments. The current is assumed to be 2-
directed. The transverse (i.e., z) variation of the current
may be described with appropriate basis functions, such as
an entire domain Maxwellian basis function which satisfies
the edge condition, or pulses, which are necessary when the
conductor does not have uniform width along the longitudi-
nal direction (as in Figure 1). The longitudinal (i.e., 2) vari-
ation of the current is described with piecewise-sinusoidal
basis functions. When the current is expanded with these
basis functions and Galerkin’s method is applied, the in-
tegral equation yields a matrix equation for the unknown
current coefficients I

vl=1[21l] (11)
The discontinuity is excited by a gap generator; hence V =
[00---010---]7 where the indexing of V is such that the
‘1’ in the vector corresponds to the position of the gap
generator on the conductor.

Characteristics of the discontinuity are extracted from
the currents on the strip using either the standing-wave
method [4] or the least squares Prony’s method [5]. The lat-
ter method is especially useful because only a short length
of conductor is required (minimizing the discretization asso-
ciated with the method of moments), and a current which
consists of multiple frequency components may be easily
separated into its individual constituents.

I11. RESULTS

The software was developed on HP/Apollo worksta-
tions, and was based on the code for the two-dimensional
version of the technique. For most of the results presented,
excellence convergence was obtained with 140 TE, and 140
TM, modes, and 400 modes in the longitudinal direction.
The verification of the two-dimensional code, which in-
cludes all of the mode-matching portion of the technique, is
discussed in [2]. The portion of the code which accounts for
the extension to three-dimensional structures was verified
by comparing with previously published characterizations
of various shielded microstrip discontinuities.

In order to develop the expertise which is required to
design and characterize a transition to a layered ridged di-
electric waveguide, some simpler structures are first con-
sidered. The geometry of a microstrip on a dielectric ridge
with an open end discontinuity is given in Figure 3, and
samples of the characterization of this structure are dis-
played in Figures 4 and 5.

The first plot shows £5;; as a function of frequency
for various ridge widths d when substrate height h; and
ridge height h, are constant. The difference in £S5y, be-
tween the case when the conductor covers the entire ridge
(d = 100um) and the case when the ridge is very wide (i.e.,
microstrip) is only 2-4°. The difference between the case
when the ridge width is three times the width of the con-
ductor (d = 300pm) and the microstrip case is insignificant.

The second plot shows £51; as a function of ridge height
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Figure 3: Conducting strip centered on a dielectric ridge. The ridge
is centered in the cavity. w = 100pm; ¢, = 12.85; cavity dimensions
are ¢ = b = 1.2mm and ¢ = 10.0mm.
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Figure 4: £8;; vs. frequency for the strip-ridge structure of Figure 3

at ridge width d = 100.0um and d = 300.0pm with h; = hy =
50.0pm. Also included is data for a microstrip (hy = 0).
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Figure 5: £51; vs. ridge height hs, for the strip-ridge structure of
Figure 3 at various values of ridge width d with frequency = 94 GHz
and hy + hs constant at 100.0um.

hq for various ridge widths d when frequency and total
height (hy + hs) are constant. When the ridge height is
Opm, all cases reduce to simple microstrip and £S5y is the
same for each curve. As the ridge height is changed from
Oum to 100um (no substrate), a variation in £S1; of only
4° occurs.

The data demonstrate that the behavior of the fields at
the discontinuity is not strongly dependent on either ridge
height or ridge width. A similar, more comprehensive study
of complicated strip-ridge structures will yield necessary



information on how the alteration of ridge dimensions af-
fects the performance of a transition to a layered ridged
dielectric waveguide.

A first step in the characterization of an actual tran-
sition is the determination of a suitable strip-waveguide
configuration. The propagation constants of two strip-
waveguide test cases are displayed in Table 1. The “Mi-
crostrip Modes” are the propagating modes of the strip-
ridge structures described in the Table; these results were
obtained from the 3D IEMM technique and verified with
the 2D IEMM software. The spatial distributions of the
power density of the microstrip modes are similar to those
of classical microstrip in that they extend from the top con-
ductor down to the ground plane. The “Dielectric Waveg-
uide Modes” are the propagation constants for the layered
ridged dielectric waveguide without any conducting strips;
these results were obtained from a mode-matching method.
The power densities associated with the dielectric waveg-
uide modes are distributed differently than those of the mi-
crostrip modes, in that they are concentrated in the lower
layer of the ridge and do not penetrate extensively into the
substrate or the upper layer (Figure 6).

These data suggest several considerations for the de-
sign of a transition. The wider strip-ridge supports two
propagating modes, and one of these modes has a propaga-
tion constant which is extremely close to the propagation
constant of the corresponding dielectric waveguide. The
narrower strip-ridge supports only one propagating mode,
and it is quite different from the dielectric waveguide mode.
The former structure is possibly a better candidate for a
transition, assuming that a criterion for a good transition
is that the propagation constant of a mode in the strip-
ridge structure match the propagation constant of the di-
electric waveguide; further investigation will test this as-
sertion. It is also possible that the transition could consist
of a multi-mode strip-ridge structure feeding a unimodal
dielectric waveguide; in general, then, optimization of the
transition must be taken to mean minimization of the total
reflected power contained by all the microstrip modes.

IV. CONCLUSION

With the ultimate goal being the characterization of a
transition to a dielectric waveguide, the 3D IEMM tech-
nique has been presented. As a prelude to the characteri-
zation of an actual transition, the method was applied to
some simple strip-ridge structures, and the data demon-
strated that ridge height and width do not strongly affect
the phase change associated with this particular type of
open-end discontinuity. Initial results for two more compli-
cated strip-ridge structures were also given, and one of the
strip-ridge structures had a mode with a propagation con-
stant similar to the propagation constant associated with
the layered ridged waveguide alone. In order to realize the
characterization of an actual transition, future results will
include two-port structures, conductors with non-uniform
widths along the longitudinal direction, and experimental
results.

Substrate GaAs
e = 12.85

Substrate Hgt. 17.1pm
Lower Layer AlGaAs

in Ridge e = 10.0
Lower Layer Hgt. 22.7pym
Upper Layer GaAs

in Ridge € = 12.85
Upper Layer Hgt. 58.2pm
Ridge Width 100pum | 40pm
Conductor Width 50um 35um
f—Microstrip 3.173k, | 2.335k,

Modes 1.598k,
B—Dielectric 1.788k, | 1.218k,

W.G. Modes

Table 1: Comparison of two strip-waveguide structures at 470 GHz.
The layered ridged dielectric waveguide has a cross-section as de-
scribed in Figure 2, and the strip is centered on the ridge.
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Figure 6: Power density of the propagating mode in the dielectric
waveguide described in Table 1.
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